大腿骨側におけるImpacted cancellous allograft and cement法の力学的ならびに組織学的検討 - 犬モデルを用いて-

広島大学整形外科

大本	修、	安永	裕司
生田	義和、	重信	隆史
後藤	俊彦、	藤井	二郎
久留	隆史、	金沢	敏勝

はじめに

人工股関節再置換術時の大腿骨側の骨欠損 に対する手技として、従来 long stem をセ メントあるいはノンセメントで置換する方法 が主として行われてきたが、骨欠損の改善は 得られず必ずしも満足する結果は得られてい ない^{11 21}。

そこで Gie と Ling らの開発した Impacted cancellous allograft and cement 法^{3) 4)} が、近年注目され、その短期臨床成績が諸家 により報告されている。これらの報告では、 術後早期の sinking はある程度生じるものの radiolucent line の出現度も低く、臨床的に も良好な成績が得られている^{3) 5) 6)}。

しかしながら、本法において移植された同 種骨について力学的ならびに組織学的に検討 を加えた報告は少なく、移植同種骨の置換過 程については不明な点が多い^{4) 7) 5)}。そこで 我々は犬モデルを使用して術後早期の stem 周辺の X 線学的検討、荷重時のひずみ測定 による力学的検討ならびに骨移植部の組織学 的検討を行った。 実験材料および方法

実験材料

使用したインプラントは骨頭径 15mm の チタン合金製で、Gie ら⁹⁾の推奨する collarless, polished, taper stem とした (図 1)。

図1. 使用した犬用stem

実験動物は体重約 10kg のビーグル成犬 (50 週齢)を使用した。移植骨は滅菌下に 他のビーグル犬の大腿骨顆部より採取した海 綿骨で、移植まで-80 ℃で凍結保存し使用時 に室温にて自然解凍した。

手術法

骨折が生じない範囲で海綿骨ならびに大腿 骨皮質を削開後、骨欠損部 1cm[®] あたり約 1.5g の同種海綿骨を stem より全周で 1mm 大きいタンパーを用いてインパクトした後、 stem をセメント固定し、これを移植群とし た(図 2)。

一方、可及的に海綿骨を除去し皮質骨を温存し骨移植を行わず stem をセメント固定し、 primary な THA に近似させた手術例を対照 とし、これを非移植群とした。術後 2 週間 のギプス固定を行い、その後は自由に荷重さ せた。

図2 術後の割断面。Collarless, polis hed, taper stemが同種自家骨で再建 された髄腔に約1mmのセメント層を介 して挿入されている。

X線学的検討

移植群と非移植群の各 4 頭の術直後、術 後 4 週、および術後 8 週(屠殺時) にレン トゲン撮影を行い、sinking および radiolucent zone の有無を観察した。Sinking は 手術時に転子部皮質骨内に留置した直径 1mmのステンレス球2個を基準として測定した。

力学的研究

荷重試験は移植群と非移植群の術後 8 週 を経過した各 4 頭で行った。ネンブタール 過量投与により屠殺後、大腿骨を摘出した。 そして、万能試験器(島津社製 AGS-1000-A)を用いて 30kgf の荷重を加え、stem の中枢および末梢レベルで各々内側、外側、 前方、後方の大腿骨表面に 3 極ひずみゲー ジ (共和 電業社製 KGF-2-120-D17-11 L3M2S)を装着してひずみを計測した(図 3)。

図3. 力学試験

組織学的検討

移植群の術後 4 週 (2 頭)、8 週(3 頭)、16 週(3 頭)、および 1 年 (2 頭)において、屠 殺前にカルセイン 200mg を 6 日間の休薬期 間をおいて 2 回筋注し中枢部と末梢部の 2 ヵ所で Villanueva 染色後非脱灰標本を作成

図4. 術後X線像 a:術直後、 b:術後4週、 c:術後8週 術後8週においてZone 2, 5, 6に1~3mmのradiolucent zoneを認める。

し、骨移植部の組織学的検討を行った。画像 解析ソフト(Osteoplan II, Carl Zeiss, NY,U,S,A.)を用いて中枢部 30 視野、末梢 部 20 視野(1 視野 1.2mm×1.2mm)で、髄腔 内移植部での石灰化速度、骨形成率を計測し、 各個体の平均値を算出した。

結 果

1) X線学的評価

X線学的には移植群(4 頭)、非移植群(4 頭)ともに術後 4 週、8 週にて明らかな sinking は認めなかった。Radiolucent zone は 移植群では術後 8 週群の 2 頭において骨移 植部の zone2, 5, 6 に認め、1 ~ 3mm の幅 であった(図 4 a,b,c)。

2) 力学的評価

荷重試験での大腿骨の内側と外側のひずみ は、両群ともに内側特にその末梢部で大きな 圧縮ひずみを生じ、やや移植群で大きな値を 示した。外側では引っ張りひずみを生じてい たが、内外側とも両群間に有意な差は認めな かった。前後面においては前面では引っ張り ひずみが、後面では圧縮ひずみが大きい傾向 があったが、両群間に有意な差は認めなかっ た(図 5)。

図5. 力学試験による平均ひずみ値(術後8 週)(Mann-Whitney's U test.)

3) 組織学的評価

a)光学顕微鏡ならびに蛍光顕微鏡所見

術後 4 週の中枢部では、すでに母床皮 質骨周囲に骨新生が盛んに生じていたが、 その末梢部は、中枢部に比べ骨新生は劣 っていた(図 6a, b)。

術後 8 週の中枢部では、骨梁の形成が 明瞭となっていたが、その末梢部では、 未だ骨梁の形成は不十分であった(図 7a, b)。

術後 16 週になると、末梢部においても 明瞭な骨梁形成が生じていた(図 8a, b)。

術後1年では、中枢部及び末梢部とも にほぼ正常な骨梁が形成されていた(図 9a, b)。

図6. 術後4週 Villanueva染色(×100 蛍光) a:中枢部では母床皮質骨周囲にカルセイン標識が鮮明に認められる。 b:末梢部では 軽度認められるのみである。 H:母床皮質骨、 N:新生骨、 G:移植骨 F:線維組織。

- b
- 図7. 術後8週 Villanueva染色(×50 蛍光) a:中枢部では骨梁の形成が明瞭となっている。 b:末梢部ではいまだ骨梁の形成は不 十分である。H:母床皮質骨、N:新生骨、F:線維組織。

図8. 術後16週の末梢部 Villanueva染色 (×50 a:普通光 b:蛍光)。 末梢部においても明瞭な骨梁形成が生じており(a)、カルセインが鮮明に認められる(b)。 H:母床皮質骨、 N:新生骨、 F:線維組織

h

 図9. 術後1年 Villanueva染色(×50普通光) a:中枢部 b:末梢部 術後1年ではほぼ 正常な骨梁が形成されている。 H:母床皮質骨、 N:新生骨、 F:線維組織

b) 骨形態計測

石炭化速度、骨形成率とも術後 8 週ま では末梢部より中枢部において大きい傾 向にあるが、16 週では中枢と末梢の差が なくなってきていた。術後 1 年では骨形 成率が低下していた(表 1)。

		平均石灰化速度 (mm/year)	平均骨形成率 (mm ³ /cm ² /y)
術後 4週	中枢	1.21	12.3
(2頭)	末梢	0.974	5.41
術後 8週	中枢	0.864	7.13
(3頭)	末梢	0.523	1.55
術後16週	中枢	0.569	5.85
(3頭)	末梢	0.674	4.04
術後 1年	中枢	0.610	2.00
(2頭)	末梢	0.591	1.81

表1 髄腔内骨移植部の骨形態計測

以上の組織学的評価より、術後4週から8 週にかけての術後早期には大腿骨中枢部から 骨新生が生じ始め、次第に末梢部でも骨新生 が進行していた。術後1年ではほとんどの 移植骨が吸収され、髄腔中心部に正常な骨梁 が存在していた。しかしながら、術後1年 の時点においてもセメント層に接した部分で は、少量ながら移植骨の存在が認められた (図10)。

 図10. 術後1年の中枢部 Villanueva染色 (×50 普通光)。術後1年の中枢部でも セメントで囲まれた部分でいまだ移植 骨の残存が認められる。G:移植骨、 C:セメント層、 F:線維組織

考察

Schreurs ら⁸⁾は、山羊を用いて Impacted cancellous allograft を行い、X 線学的に sinking は術後 6 週で7%にみられたと報告 しているが、今回のわれわれの実験では sinking は認められなかった。これは犬の皮質 骨が山羊に比べて硬く強固に impact 可能で あったことや、術後狭いケージ内で飼育した ため運動量が少なかったことなどが関与した と考えられた。また、骨移植部に radiolucent zone の出現を術後 12 週までに全例 認めたと報告し、組織学的検討から移植骨の 同化の過程であると推察している。われわれ の実験でも術後 8 週で半数の症例で骨移植 部に radiolucent zone の出現を認め、移植 骨の吸収が示唆された。また Schreurs らは 荷重試験を行い回旋安定性と長軸安定性を検 討し、術後 6 週までに stem の固定性の改善 が得られているが、12 週でもいまだ完成し ていなかったとしている。自験例での荷重試 験では、ひずみの大きさは primary THA の モデルと近似した値が得られ、術後 8 週と いう比較的早期において、本法の長軸方向へ の力学的安定性が示された。

本法における動物実験での移植骨の吸収お よび骨新生の経時的ならびに定量的検討は十 分とはいえないが、おおむね 12 週頃に骨形 性のピークが存在するものと報告されている 8)。我々の実験においては、最初に中枢部に より旺盛な骨新生を認め、やや遅れて末梢部 へも骨新生が生じ始め、術後8週から16週 頃にかけて骨形成のピークが存在し、術後1 年で組織学的に安定した状態となっていると 考えられた。しかし本実験は 50 週齢のビー グル成犬を使用しているため、皮質骨が硬く 丈夫で、また大腿骨周囲の軟部組織も健常で 血行が良好である。そのため臨床例のように 血行が乏しく脆弱な皮質骨の条件下では、本 実験のように移植骨の同化が進行するとは考 えにくく、さらに遷延するものと考えられる。

本法の短期臨床報告においては術後早期に 生じる stem のセメント内あるいは移植骨内 での sinking が問題点としてあげられている ^{4) 5) 6)}。特に移植骨内のセメント層の sinking は移植骨が吸収される際の圧縮強度の 弱化によって生じるものと考えられるが、骨 欠損量すなわち移植骨量に大きく左右される ものと推察される。今後は骨欠損の程度や移 植骨片の大きさが力学的強度ならびに移植骨 の置換過程におよぼす影響についての検討も 必要である。

まとめ

- Impacted cancellous allograft and cement について犬モデルを使用して X 線学的、力学的ならびに組織学的検討を 行った。
- X 線学的には sinking は認めず、術後 8 週で 50 %に骨移植部に radiolucent zone の出現を認めた。
- カ学的には術後8週で骨移植群と非移植 群間にひずみ値の有意差は認めなかった。
- 4) 移植骨の自家骨への置換は術後8週まで は大腿骨末梢部よりも中枢部に優位に認 められ、末梢部においては遅延していた が、術後16週では中枢部と同等に骨新生 を認め、術後1年でほぼ骨同化が完了し ていた。

本研究は、財団法人日本股関節研究振興財 団平成 9 年度助成金による。なお本論文の 要旨は、第 13 回および第 14 回日本整形外 科学会基礎学術集会ならびに第 92 回中部日 本整形外科災害外科学会にて発表した。

文 献

- Amstutz HC, et al.: Revision of aseptic loose total hip arthroplasties. Clin Orthop 170: 21-33, 1982.
- (2) Rubash HE, et al.: Revision of nonseptic, loose, cemented femoral components using modern cementing techniques. J Arthroplasty 3: 241-8, 1988.
- (3) Gie GA, et al.: Impacted cancellos allografts and cement for revision total hip arthroplasty. J Bone Joint Surg 75-B: 14-21, 1993.
- (4) Ling RSM, et al.: Hiatology of

cancellous impaction grafting in the femur; A case report. J Bone Joint Surg 75-B: 693-696, 1993.

- (5) Elting JJ, et al : Preliminary report of impaction grafting for exchange femoral arthroplasty. Clin Orthop 319 : 159-167, 1995.
- (6) Meding JB, et al.: Impaction bone-grafting before insertion of a femoral stem with cement in total hip arthroplasty: A minimum two-year follow-up study. J Bone Joint Surg 79-A : 1834-1841. 1997.
- (7) Nelissen RGHH, et al. : Revision hip arthroplasty with the use of cement

and impaction grafting: Histological analysis of four cases. J Bone Joint Surg 77-A: 412-422, 1995.

- (8) Schreurs BW, et al.: Morsellised allografts for fixation of the hip prosthesis femoral component: A mechanical and hintological study in the goat. Act Orthop Scand 65: 267-275, 1994.
- (9) Gie GA, et al.: The long-term behaviour of a totally collarless, polished femoral component in cemented total hip arthroplasty. J Bone Joint Surg 72-B: 935, 1990.